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Scaling properties in off-equilibrium dynamical processes
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In this paper, we analyze the consequences of scaling hypotheses on dynamic functions, such as two-time
correlationsC(t,t’). We show, under general conditions, thaft,t') must obey the scaling behavior
C(t,t") = ¢1(t) P S(B), where the scaling variable 8= B(¢,(t')/ $1(t)) and ¢,(t'),p,(t) are two unde-
termined functions. The presence of a nonconstant expdi{gt signals the appearance of multiscaling
properties in the dynamic§S1063-651X99)15003-7

PACS numbe(s): 64.60.Fr

I. INTRODUCTION TZFl(t,|) Af'ZFZ(t'J), ®)

_ The introducti(_)n qf scaling C(_)ncepts to_ d_escribe equi_lib-With the condition thafF,(x,1)=x(i =1,2). The above trans-
rium and off-equilibrium dynamics in statistical mechanics,.mations are nonmixing in the sense ta(F,) depends
was originally motivated by experimental and simulation 1y ont(t'). The requirement that the transformation obey
data.about, for instance, structure factor, pair correlatlorgJroup properties imposes some constraints on the functions
functions, and response functions. Actually, the study of SeVE(t,t') andf(t,t'). Interestingly, under these assumptions,

eral classes of materials with complex dynamical propertieg , thatC(t,t') can be synthetically expressed in the
such as magnets, polymers, glasses, and several other th Nlowing way:

mal systems, and even nonthermal systems such as granular
media, has shown the presence of some general scaling fea- " — £(8)
tures[1-3]. In order to formulate a coherent scaling ap- CU)= A (OTS(B), &)
proach to the dynamics of systems out of equmbngm, in thlsWhere the scaling variablg has the following form:
paper we resort to a general scheme developed in 471
This approach also reproduces as a particular case the mul-
tifractal and the multiscaling formalisms, which have been
applied to a large variety of phenomena such as turbulenc
random resistor networks, self-organized criticality, spinodal : / . . . X

s A : transformations given in Eq2). Equation(3) in the particu-
decomposition, and many mof8—13|. The general scaling lar casef(B)=0 was obtained in Ref.15] using different

formulation applied to systems out of equilibrium stems ts. Notice that whenev h tant. a “mul
from the hypothesis of invariance of two-time functions, grgur_nerls. otice that wheneves not a constant, a “mul-
caling” dynamical behavior is found in the dynamics, an

such as autocorrelation functions, under a general scalin teresting issue 1o check in models as well as experiments
transformation with the only requirement that the transfor-an d simu?ations P

mation obey group properties.
For definiteness let us consider a two-time correlation

function, C(t,t"), which, for example, could be the density- Il. GENERAL NONMIXING CASE
density autocorrelation function in a supercooled liquid or . . o

. . . - : In what follows we give a demonstration of the principles
the spin-spin correlation function in a magnetic system. We . :

: . summarized above. As shown in Rp4], the general trans-

suppose that the system is prepared at time and is

. . formations of Eq.(2) implies that there exist a couple of
probed at .t\_/vo. subsequ?nt timeisandt. When the system is functions, ¢4 (t) and ¢,(t'), that under rescaling exhibit the
out of equilibrium,C(t,t") generally depends on both and following proberties:

t. Whenever the relaxation characteristic times very large g prop '

or infinite, we may make the following asymptotic scaling ~ ~, ,

ansatz valid fot andt’ large but smaller than: by rescaling $1(1) =1V, ha(17) = Po(t")/1. (5)

the system lengths by a facthrif t andt’ are opportunely ] . ) )
rescaled, we may expect that the autocorrelation function The,:se equations state that the “true” scaling variables are
scales as'®t) where the exponerf(t,t') is, in general, the ¢;'s and that whenever the functiont are invertible,

dependent ohandt’ [14]. To be precise, we assume that the Egs.(2) can be expressed in the following way:
function C(t,t") has the following general scaling property: _

t=Fy(t,1) =1 N (D)), T =F,(t',1)= ¢, (pa(t")/),
cttH)=1"fete,t) (1) (6)

B=do(t") hy(1). (4)

ere theg,;(i=1,2) are two unknown functions fixed by the

under a general time rescalinqénmixing transformation,  where ¢f1 is the inverse function ofp; [i.e., ¢i’1(¢i(x))
which satisfies group rules, such as =X].
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Let us now study how the above group properties influ-f =0. But in general one might expect cases witlifferent
ence the structure of the functidi(t,t"). The group rules  from 0. For instance, in the Bak-Sneppen SOC model, the
impose that if we scaleandt’ by a factorl, and later by a  to-time functionP(t,t’), describing the return of activity
factor I, this should be equivalent to rescaling them by ayg 3 site at time that was most recently active at tirtie for
factorl,l,. More formally, we can express this condition as g, avalanche started &t 0, seems to have a scaling of the

) form: P(t,t")=tsP(t’'/t) [22], with constantzgs. In a
CIF1(Fa(t10),12) Fa(Fa(t' 11),12)]= (11]2) " C(tt). model oE‘ dirt)ect polyr(ners? irE ra]ndom media, sim?lfa’r behavior
(7 is found for the off-equilibrium *“overlap function”:

Substituting Eqs(1) and(2) in the above relation, one is led q(t,t")=t"*q(t’/t) [23]. In some models of nonlinear dif-
to a simple equation that states that fusion equation$24], correlation functions have been shown
to have a “power law” scaling structure of Eq10) with
d Ly constant exponentisand with a scaling functios which is
af(t(l)’t (N=0, (8) itself a power law. In the framework of our equilibrium dy-
namics, phenomena such as coarsening or, more generally,
where, by definitiont(l)=F4(t,1) andt’(I)=F,(t,1). By  phase ordering kinetics in ‘“standard” Ginzburg-Landau
inserting Eq.(6) in Eq. (8), one finds thatf (¢, *(¢1/1), magnets usually show correlation functions which are as-
¢2*1(¢2/|)):f(¢;1(¢1/1),¢2*1(¢2/1)), i.e., we have that ymptotically characterizesee[2]) by the above scaling of
f(p1 (b)), 05 H(da/1))=F(1,t"). Now, by takingl=¢,;  EQ (10), Which is. often called:impleorfgll or naive aging
we obtain thaﬂ:(t’t’):f((bil(l)' ¢£1(¢2/¢1)), that is to !n some dlscu_ssmns of glassy relaxation, a more co_mplex,
say, f(t,t")=f(do(t")/ by(1)). interrupted aging scenario was also propos¢a,16], in
which the long-time regime of the two-time autocorrelation
|=¢,, we find the scaling form foE(t,t') that we antici- function scales a€(t,t')=S(t"/t'"#). In the present pic-
pated in Eq(3) above. In such a way we also individuate the tUré thlslltzzorrespongs to 1&% different power exponents for
scaling functionS: S(x) = C(¢; *(1),¢, 1(x)). $1(1)~ 17 and ¢,(t') ~ o o ,
Thus we proved that in the presence of scaling properties In_ the case wheré,: f(t'r) sa nontr|_V|aI functlon Of. the
such as those written in Eqél) and (2), the asymptotic scaling variabled=t'/t, one finds anultiscalingdynamical

functional form of the scaling o€(t,t’) is characterized by 3$]t1aviotr. This its gnalcogqulg to tr&ezmultistgqlin?hfounq, ig ?
the asymptotic behavior of the “true” scaling variables dl eren C(.)t.n X ’f t?:eN Sno'og Ic(;)' anb aEnedl In edslplnﬁha
and ¢,, as written in the general result of E). ecompasition o — % Linzburg Landau model wi

For the sake of clarity we have dealt with a two-variableconserved order parameter or the one proposed also for the

function, C(t,t"), but analogous properties may be provende?s'g profllg of the DLA}hmodeﬂ%S]. iabl the ratio of
for a many-variable functiorG(t,,t,, ... t,). In this case, h the previous cases, the scaling variablé was the ratio o

i i i ~. powers of the two involved times; however, in different situ-
if the generic variable undergoes a scale transformattion aiions, for instance in the limit in which the exponenz 1/
=F(t;,D(ie{1,...n}), we have

goes to zero, one may expect to have a logarithmic behavior
Clty by, - t)=¢a(t) P2 PIS(By, .. Br),  (9)

for ¢:é(t)~In(t). This situation gives as scaling structure
C(t,t") = In(t) M S(In(t')/In(t)). In many cases one has

with (i>1)8,=¢i(t;)/ ¢.(t1). As before,f(xq, ... X,_1), f=0, namely,

andS(xq, . .. X,—1) are undetermined functions.

Analogously, by inserting Eq6) in Eq. (1), and choosing

Some examples C(t,t")=8(n(t")/In(t)). (11
In many physical cases we might generally expect that the
two times,t and t’, scale in the same way, i.e¢;=¢, 1helogarithmic scalingof Eqg. (11) is found in several sys-

= . Below we explicitly list a few interesting examples in tems. An example of diffusion that shows the logarithmic
this category. scaling is the one-dimensional Sinai model with a random

A Simp|e situation Corresponds to a Sca”ng functionJocal bias. In this case, for instance, the two-time residency

#(t), which is asymptotically a power law in(see refer- Probability asymptotically has a scaling form given by Eq.
ences in[4)), i.e., one hasp(t)~t'? and the scaling of (11) with a scaling functionS(8), which is an exponential
C(t,t') is C(t,t")=t''/DS(t'/t). In most cases we expect corrected by a power law i =In(t')/in(t) [25]. Random
the exponent to be a constant, so that field systems also show Iogarl_thmlc scalirgg3], but experi-
mental random exchange Ising ferromagng28], among
C(t,t")=t"2S(t'It). (10) many otherg2,3], also belong to this category. Logarithmic
kinetics also have recently been experimentally observed in
Asymptotically, the “power scaling” of Eq(10) is found in  the amorphous-amorphous transformations in some glasses
several toy models for glasses such as in a “phase spacetinder high pressurf27]. Interestingly, nonthermal systems
model[16], the Backgammon entropic barriers mo{i&g], such as granular media, shaken at low vibration amplitudes,
the Queens long-range interactions modid], in solvable also present a nontrivial out- of-equilibrium dynamics, where
models of interacting particles in high dimensionali0], numerical calculations on different moddl§7] suggest a
or in a kinetically constrained lattice gé21] (see also ref- logarithmic scaling in the relaxation of the two-time density
erences in3]). Several of these cases are characterized bgorrelation function as in Eq11).
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The scenario for other disordered systems such as spimefore. The scaling form given in E¢L5) corresponds in-
glass models is still controversial. To describe numerical calstead to a nonconstant scaling exporen(t,t') in Eq. (2),
culations and to fit experimental data of relaxation in thewhich thus gives a mixing transformation bandt’. Actu-
thermoremanent magnetization of some spin glasses, sevesdlly, it turns out that the only possible solution for a noncon-
proposals, such as power scalifign. (10)] and logarithmic  stantz is z(t,t’)= 8, with 8 given in Eq.(15). In this case
scaling[Eg. (11)], have been madg8-31,3. Also, in re-  the scaling variable is asymptotically logarithmic in the two
cent computer simulations of a Lennard-Jones offtimes, B=In(t’)/In(t)+O(1/In(t)). This kind of scaling for
equilibrium glass model the asymptotic behavior of the audifferent variables was proposed, for instance, for the multi-
tocorrelation function was suggested to have a logarithmidractal description in turbulend®,6], in the DLA model[7],
scaling[32], as opposed to the power law scaling previouslyin self-organized-critica(SOQ models[8] and in voltage
proposed 33|. distribution of random resistor network4,9]. These scaling

forms, unlike ordinary critical phenomena, are characterized
1. MIXING CASE by a continuity of scaling exponents.
) . For definiteness it is interesting to work out the simple

Up to now we have dealt withonmixingscale transfor- - caqe where the functiod () is linear in 8, a situation that
mations, as in Eq(2), where the scaling of each of the vari- gt generically correspond to the case of very long times

ables does not depend on the other. However, situatiorgnd smallg. B o _ R
A . . . By writing H(B8)=BIn(tg)—In(t;) (wheret
where mixing is present might be possible. Formally, the and t) are constanis from Eq. (15)0 one ?inds that[g

case of mixing may be dealt with as the nonmixing one;” " 7, . )
however, the results are too general to be of immediate prac- In(t /to)lln(t/tO)'. This case corresponds, for m;tance, to the
ultifractal scaling proposed by Kadandt al. in Ref. [8]

tical use. For the sake of completeness, we just show thenf! : : RS
In the mixing case one finds that E@) must be replaced by to describe the avalanche size distribution in the context of
C(t,t")= ¢, (t,t") A S(B), where the scaling variablg is SOC models. .

now B= (t,t')/ b4(t,t"). Here, as before, the, (i =1,2) Below, we work out the example of mixing transforma-

are two unknown functions fixed by the mixing transforma—tIon of Eg. (12) in detail. As in the general case above, we
s ~ ) have to impose the group rules on the scale transformations.
tions t=F,(t,t’,1) andt’'=F,(t,t’',1) [with F(t,t',1)=t

i For the transformation of the variabteandt’ this implies
and F,(t,t’,1)=t"]. The above result may be of little use (i=1,2)

because any function of two variable€gt,t’) may be writ-
ten as above in terms of two other functiogs(t,t’) and Fi(Fo(tt' 1), Fa(t,t’ 1), 1)=F(t,t",1415). (16
Pa(t,t").

However, it may be interesting to work out a specific For a transformation as in Edq12), this assertion simply
example of mixing transformations, that shows how one maymposes that
recover, from simple scale principles, a multifractal scaling
structure. d

g1 2, (hH)=0. 17)
An example of mixing
The above Eq(17) has two kinds of solution. The first is the
trivial one: z=const. The second is nontrivial and has the
following form:

While the functionC(t,t") has the general scaling prop-
erty of Eq. (1), we now assume that the rescaling transfor-
mations oft andt’ have the following specific form under a

scale change of extensidn Int') H(z)
~ - ) 7= ——+—, (19
t=t/l, 1T =t//1Z), (12) In(t) ~ In(t)
Interestingly, within this context, we find that the scaling of whereH(2) is a generic function. The latter may be obtained
C(t,t") is restricted to the following structure: as follows. Since the function(t,t’)=z(t/l,t'/I?) is invari-
, 1) ant under rescaling Eq17), we can write thatz(t/l,t'/1%)
C(t,t")=t"7S(B). (13 —zt,t'). By fixing |=t, we obtainz(t,t')=2(1t'/t?).

Thuszis a function of the single variablg/t*, and we can

Here the scaling variabl@ has only two possible forms: write 2(t,t') = g(t'/t?). Here we have defined

either it is a ratio of powers of the two times

B=t'It? (14) g(t’' Ity =z(1t'ItH). (19
with z= const(corresponding to a nonmixing case previouslyBy inverting the above relation, we hawe/t*=g~*(2),
described, or and passing to the logarithms we recovet In(t')/In(t)

+H(2)/In(t), where we have introduced the unknown generic
In(t") H(B) function H(z) = —In[g"%(2)]. Thus we have found the solu-
= WJF W (15 tion given in Eqg.(18). This result states that, for fixez
whenever In() and Inf) are large enough, we have
whereH () is an undetermined function. =In(t")/In(t)+O[L/In(t)].
The scaling form(14) corresponds to the cas#t,t’) By then imposing group properties on the function

=const, which is one of the nonmixing cases we dealt withC(t,t") itself [see Eq.7)], we obtain Eq.8), which, after
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insertion of Eqg.(12), implies thatf(t/I,t'/1*)=f(t,t'), and namics (i.e., with aging effects. Interestingly, we have
by taking I=t, as above, we have thatf(t,t’) pointed out that in a broad variety of physical systems, rang-
:f(llt'/tl(t,t')). ing from magnets to polymers, glasses, or spin glasses, ran-
Wheneverz is a constant we recover a nonmixing casedom fields, random ferromagnets, granular materials, diffu-
described in the preceding section. Let us now supposethatSive Systems, etc., one observes scaling properties of
is not a constant and is given by E@.8). In this case, we dynamical functions that may well be inserted in the frame-
can prove that the exponefttt,t') is a function of the single Work reported above. _ .
variablez: f(t,t')=f(z). In fact, as before we have that  We have shown in full generality that a generalized ho-
f(t,t')=f(1t'/1t9)=f(1g L(2)), i.e. fis a function of the Mogeneous functiorC(t,t"), which acts as in Eq1) under
variablez. Analogously one proves th&(t,t’)=t'@s(z), the scale transformatlon of its variables given in E?q)
where the scaling functios is now S(x)=C(1g~%(x)). must obey the scalllng pehawor of I_E(G). In this thgorgncal
From this result, in the asymptotic limit of largé andt, we framework, a multiscaling or multifractal behavior is also

recover the scaling form fo€(t,t'), given in Eqs(13) and admissible in the dynamics. It would be interesting to deter-
(15). o mine if it exists in real dynamical systems.

The present approach is not restricted to scaling of dy-
namical functions. We have seen that it describes, as is well
known, the usual scaling in standard critical phenomena, but

We expect that the present approach may be useful ti also describes multiscaling and multifractal properties in-
describe general properties of dynamical functions in physitroduced in apparently completely different systems such as,
cal systems when their characteristic times diverge, since, imodels of self-organized-criticality, DLA, random resistor
such a situation, such as close to usual critical points, scaleetworks. In this sense this approach may help to rationalize
invariance should be reasonably present. Actually, one olbthe existence of very few broad “universality classes” found
serves diverging characteristic times typically when out-of-in the scaling behaviors in very different contexts.
equilibrium-dynamics phenomena become important, i.e.,
when an explicit dependence of functions suclCést’) on
both times(and not on their differengdas observed, a state
which is sometimes generically called “aging.” In this per-  This work was partially supported by TMR Network Con-
spective the structural properties of scaling described hergact No. ERBFMRXCT980183 and MURSTGrant No.
should be naturally associated with out-of-equilibrium dy-PRIN-97).

IV. CONCLUSIONS
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