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Scaling properties in off-equilibrium dynamical processes

Antonio Coniglio and Mario Nicodemi
Dipartimento di Fisica, Universita´ di Napoli ‘‘Federico II,’’ INFM and INFN Sezione di Napoli, Mostra d’Oltremare,

Padiglione 19, 80125 Napoli, Italy
~Received 3 November 1998!

In this paper, we analyze the consequences of scaling hypotheses on dynamic functions, such as two-time
correlationsC(t,t8). We show, under general conditions, thatC(t,t8) must obey the scaling behavior
C(t,t8)5f1(t) f (b)S(b), where the scaling variable isb5b„f1(t8)/f1(t)… andf1(t8),f1(t) are two unde-
termined functions. The presence of a nonconstant exponentf (b) signals the appearance of multiscaling
properties in the dynamics.@S1063-651X~99!15003-7#

PACS number~s!: 64.60.Fr
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I. INTRODUCTION

The introduction of scaling concepts to describe equi
rium and off-equilibrium dynamics in statistical mechani
was originally motivated by experimental and simulati
data about, for instance, structure factor, pair correlat
functions, and response functions. Actually, the study of s
eral classes of materials with complex dynamical proper
such as magnets, polymers, glasses, and several other
mal systems, and even nonthermal systems such as gra
media, has shown the presence of some general scaling
tures @1–3#. In order to formulate a coherent scaling a
proach to the dynamics of systems out of equilibrium, in t
paper we resort to a general scheme developed in 1971@4#.
This approach also reproduces as a particular case the
tifractal and the multiscaling formalisms, which have be
applied to a large variety of phenomena such as turbule
random resistor networks, self-organized criticality, spino
decomposition, and many more@5–13#. The general scaling
formulation applied to systems out of equilibrium stem
from the hypothesis of invariance of two-time function
such as autocorrelation functions, under a general sca
transformation with the only requirement that the transf
mation obey group properties.

For definiteness let us consider a two-time correlat
function,C(t,t8), which, for example, could be the densit
density autocorrelation function in a supercooled liquid
the spin-spin correlation function in a magnetic system.
suppose that the system is prepared at timet50 and is
probed at two subsequent timest8 andt. When the system is
out of equilibrium,C(t,t8) generally depends on botht8 and
t. Whenever the relaxation characteristic timet is very large
or infinite, we may make the following asymptotic scalin
ansatz valid fort andt8 large but smaller thant: by rescaling
the system lengths by a factorl, if t and t8 are opportunely
rescaled, we may expect that the autocorrelation func
scales asl f (t,t8), where the exponentf (t,t8) is, in general,
dependent ont andt8 @14#. To be precise, we assume that t
function C(t,t8) has the following general scaling propert

C~ t̃ , t̃ 8!5 l 2 f ~ t,t8!C~ t,t8! ~1!

under a general time rescaling ‘‘nonmixing’’ transformation,
which satisfies group rules, such as
PRE 591063-651X/99/59~3!/2812~5!/$15.00
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t̃ 5F1~ t,l ! t̃ 85F2~ t8,l !, ~2!

with the condition thatFi(x,1)5x( i 51,2). The above trans
formations are nonmixing in the sense thatF1(F2) depends
only on t(t8). The requirement that the transformation ob
group properties imposes some constraints on the funct
C(t,t8) and f (t,t8). Interestingly, under these assumption
we find thatC(t,t8) can be synthetically expressed in th
following way:

C~ t,t8!5f1~ t ! f ~b!S~b!, ~3!

where the scaling variableb has the following form:

b5f2~ t8!/f1~ t !. ~4!

Here thef i( i 51,2) are two unknown functions fixed by th
transformations given in Eq.~2!. Equation~3! in the particu-
lar casef (b)50 was obtained in Ref.@15# using different
arguments. Notice that wheneverf is not a constant, a ‘‘mul-
tiscaling’’ dynamical behavior is found in the dynamics, a
interesting issue to check in models as well as experime
and simulations.

II. GENERAL NONMIXING CASE

In what follows we give a demonstration of the principl
summarized above. As shown in Ref.@4#, the general trans-
formations of Eq.~2! implies that there exist a couple o
functions,f1(t) andf2(t8), that under rescaling exhibit th
following properties:

f1~ t̃ !5f1~ t !/ l , f2~ t̃ 8!5f2~ t8!/ l . ~5!

These equations state that the ‘‘true’’ scaling variables
the f i ’s and that whenever the functionsf i are invertible,
Eqs.~2! can be expressed in the following way:

t̃[F1~ t,l !5f1
21

„f1~ t !/ l …, t̃ 8[F2~ t8,l !5f2
21

„f2~ t8!/ l …,
~6!

wheref i
21 is the inverse function off i @i.e., f i

21
„f i(x)…

5x].
2812 ©1999 The American Physical Society
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Let us now study how the above group properties infl
ence the structure of the functionC(t,t8). The group rules
impose that if we scalet and t8 by a factorl 1 and later by a
factor l 2 this should be equivalent to rescaling them by
factor l 1l 2 . More formally, we can express this condition

C@F1„F1~ t,l 1!,l 2…,F2„F2~ t8,l 1!,l 2…#5~ l 1l 2!2 f ~ t,t8!C~ t,t8!.
~7!

Substituting Eqs.~1! and~2! in the above relation, one is le
to a simple equation that states that

d

dl
f „t~ l !,t8~ l !…50, ~8!

where, by definition,t( l )5F1(t,l ) and t8( l )5F2(t,l ). By
inserting Eq.~6! in Eq. ~8!, one finds thatf „f1

21(f1 / l ),
f2

21(f2 / l )…5 f „f1
21(f1/1),f2

21(f2/1)…, i.e., we have that
f „f1

21(f1 / l ),f2
21(f2 / l )…5 f (t,t8). Now, by taking l 5f1

we obtain thatf (t,t8)5 f „f1
21(1), f2

21(f2 /f1)…, that is to
say, f (t,t8)5 f „f2(t8)/f1(t)….

Analogously, by inserting Eq.~6! in Eq. ~1!, and choosing
l 5f1 , we find the scaling form forC(t,t8) that we antici-
pated in Eq.~3! above. In such a way we also individuate t
scaling functionS:S(x)5C„f1

21(1),f2
21(x)….

Thus we proved that in the presence of scaling proper
such as those written in Eqs.~1! and ~2!, the asymptotic
functional form of the scaling ofC(t,t8) is characterized by
the asymptotic behavior of the ‘‘true’’ scaling variablesf1
andf2 , as written in the general result of Eq.~3!.

For the sake of clarity we have dealt with a two-variab
function, C(t,t8), but analogous properties may be prov
for a many-variable function,C(t1 ,t2 , . . . ,tn). In this case,
if the generic variable undergoes a scale transformatiot̃ i
5Fi(t i ,l )( i P$1, . . . ,n%), we have

C~ t1 ,t2 , . . . ,tn!5f1~ t1! f ~b2 , . . . ,bn!S~b2 , . . . ,bn!, ~9!

with ( i .1)b i5f i(t i)/f1(t1). As before,f (x1 , . . . ,xn21),
andS(x1 , . . . ,xn21) are undetermined functions.

Some examples

In many physical cases we might generally expect that
two times, t and t8, scale in the same way, i.e.,f15f2
[f. Below we explicitly list a few interesting examples
this category.

A simple situation corresponds to a scaling functio
f(t), which is asymptotically a power law int ~see refer-
ences in@4#!, i.e., one hasf(t);t1/z, and the scaling of
C(t,t8) is C(t,t8)5t f (t8/t)S(t8/t). In most cases we expec
the exponentf to be a constant, so that

C~ t,t8!5t f /zS~ t8/t !. ~10!

Asymptotically, the ‘‘power scaling’’ of Eq.~10! is found in
several toy models for glasses such as in a ‘‘phase spa
model @16#, the Backgammon entropic barriers model@18#,
the Queens long-range interactions model@19#, in solvable
models of interacting particles in high dimensionality@20#,
or in a kinetically constrained lattice gas@21# ~see also ref-
erences in@3#!. Several of these cases are characterized
-

s

e

,

e’’

y

f 50. But in general one might expect cases withf different
from 0. For instance, in the Bak-Sneppen SOC model,
two-time functionP(t,t8), describing the return of activity
to a site at timet that was most recently active at timet8, for
an avalanche started att50, seems to have a scaling of th
form: P(t,t8)5tzBSP(t8/t) @22#, with constantzBS. In a
model of direct polymers in random media, similar behav
is found for the off-equilibrium ‘‘overlap function’’:
q(t,t8)5t2xq̃(t8/t) @23#. In some models of nonlinear dif
fusion equations@24#, correlation functions have been show
to have a ‘‘power law’’ scaling structure of Eq.~10! with
constant exponentsf and with a scaling functionS which is
itself a power law. In the framework of our equilibrium dy
namics, phenomena such as coarsening or, more gene
phase ordering kinetics in ‘‘standard’’ Ginzburg-Landa
magnets usually show correlation functions which are
ymptotically characterized~see@2#! by the above scaling o
Eq. ~10!, which is often calledsimpleor full or naive aging.
In some discussions of glassy relaxation, a more comp
interrupted aging, scenario was also proposed@3,16#, in
which the long-time regime of the two-time autocorrelati
function scales asC(t,t8)5S(t8/t11m). In the present pic-
ture this corresponds to two different power exponents
f1(t);t1/z andf2(t8);t81/z1m.

In the case wheref 5 f (t8/t) is a nontrivial function of the
scaling variableb5t8/t, one finds amultiscalingdynamical
behavior. This is analogous to the multiscaling found, in
different context, by Coniglio and Zannetti in the spinod
decomposition of theN5` Ginzburg Landau model with
conserved order parameter or the one proposed also fo
density profile of the DLA model@13#.

In the previous cases, the scaling variable was the rati
powers of the two involved times; however, in different sit
ations, for instance in the limit in which the exponent 1z
goes to zero, one may expect to have a logarithmic beha
for f:f(t); ln(t). This situation gives as scaling structu
C(t,t8)5 ln(t)f„ln(t8)/ln(t)…S„ln(t8)/ln(t)…. In many cases one ha
f 50, namely,

C~ t,t8!5S„ln~ t8!/ ln~ t !…. ~11!

The logarithmic scalingof Eq. ~11! is found in several sys-
tems. An example of diffusion that shows the logarithm
scaling is the one-dimensional Sinai model with a rand
local bias. In this case, for instance, the two-time reside
probability asymptotically has a scaling form given by E
~11! with a scaling functionS(b), which is an exponentia
corrected by a power law inb5 ln(t8)/ln(t) @25#. Random
field systems also show logarithmic scaling@2,3#, but experi-
mental random exchange Ising ferromagnets@26#, among
many others@2,3#, also belong to this category. Logarithm
kinetics also have recently been experimentally observe
the amorphous-amorphous transformations in some gla
under high pressure@27#. Interestingly, nonthermal system
such as granular media, shaken at low vibration amplitud
also present a nontrivial out- of-equilibrium dynamics, whe
numerical calculations on different models@17# suggest a
logarithmic scaling in the relaxation of the two-time dens
correlation function as in Eq.~11!.
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The scenario for other disordered systems such as
glass models is still controversial. To describe numerical c
culations and to fit experimental data of relaxation in t
thermoremanent magnetization of some spin glasses, se
proposals, such as power scaling@Eq. ~10!# and logarithmic
scaling @Eq. ~11!#, have been made@28–31,3#. Also, in re-
cent computer simulations of a Lennard-Jones o
equilibrium glass model the asymptotic behavior of the
tocorrelation function was suggested to have a logarith
scaling@32#, as opposed to the power law scaling previou
proposed@33#.

III. MIXING CASE

Up to now we have dealt withnonmixingscale transfor-
mations, as in Eq.~2!, where the scaling of each of the var
ables does not depend on the other. However, situat
where mixing is present might be possible. Formally, th
case of mixing may be dealt with as the nonmixing on
however, the results are too general to be of immediate p
tical use. For the sake of completeness, we just show th
In the mixing case one finds that Eq.~3! must be replaced by
C(t,t8)5f1(t,t8) f (b)S(b), where the scaling variableb is
now b5f2(t,t8)/f1(t,t8). Here, as before, thef i( i 51,2)
are two unknown functions fixed by the mixing transform
tions t̃ 5F1(t,t8,l ) and t̃ 85F2(t,t8,l ) @with F1(t,t8,1)5t
and F2(t,t8,1)5t8]. The above result may be of little us
because any function of two variablesC(t,t8) may be writ-
ten as above in terms of two other functionsf1(t,t8) and
f2(t,t8).

However, it may be interesting to work out a speci
example of mixing transformations, that shows how one m
recover, from simple scale principles, a multifractal scal
structure.

An example of mixing

While the functionC(t,t8) has the general scaling prop
erty of Eq. ~1!, we now assume that the rescaling transf
mations oft and t8 have the following specific form under
scale change of extensionl:

t̃ 5t/ l , t̃ 85t8/ l z~ t,t8!. ~12!

Interestingly, within this context, we find that the scaling
C(t,t8) is restricted to the following structure:

C~ t,t8!5t f ~b!S~b!. ~13!

Here the scaling variableb has only two possible forms
either it is a ratio of powers of the two times

b5t8/tz ~14!

with z5const~corresponding to a nonmixing case previous
described!, or

b5
ln~ t8!

ln~ t !
1

H~b!

ln~ t !
, ~15!

whereH(b) is an undetermined function.
The scaling form~14! corresponds to the casez(t,t8)

5const, which is one of the nonmixing cases we dealt w
in
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before. The scaling form given in Eq.~15! corresponds in-
stead to a nonconstant scaling exponentz5z(t,t8) in Eq. ~2!,
which thus gives a mixing transformation oft and t8. Actu-
ally, it turns out that the only possible solution for a nonco
stantz is z(t,t8)5b, with b given in Eq.~15!. In this case
the scaling variable is asymptotically logarithmic in the tw
times, b5 ln(t8)/ln(t)1O„1/ln(t)…. This kind of scaling for
different variables was proposed, for instance, for the mu
fractal description in turbulence@5,6#, in the DLA model@7#,
in self-organized-critical~SOC! models @8# and in voltage
distribution of random resistor networks@4,9#. These scaling
forms, unlike ordinary critical phenomena, are characteri
by a continuity of scaling exponents.

For definiteness it is interesting to work out the simp
case where the functionH(b) is linear inb, a situation that
might generically correspond to the case of very long timet
and smallb. By writing H(b)5b ln(t0)2ln(t08) ~where t0

and t08 are constants!, from Eq. ~15! one finds thatb
5 ln(t8/t08)/ln(t/t0). This case corresponds, for instance, to t
multifractal scaling proposed by Kadanoffet al. in Ref. @8#
to describe the avalanche size distribution in the contex
SOC models.

Below, we work out the example of mixing transform
tion of Eq. ~12! in detail. As in the general case above, w
have to impose the group rules on the scale transformati
For the transformation of the variablet and t8 this implies
( i 51,2)

Fi„F1~ t,t8,l 1!,F2~ t,t8,l 1!,l 2…5Fi~ t,t8,l 1l 2!. ~16!

For a transformation as in Eq.~12!, this assertion simply
imposes that

d

dl
z„t~ l !,t8~ l !…50. ~17!

The above Eq.~17! has two kinds of solution. The first is th
trivial one: z5const. The second is nontrivial and has t
following form:

z5
ln~ t8!

ln~ t !
1

H~z!

ln~ t !
, ~18!

whereH(z) is a generic function. The latter may be obtain
as follows. Since the functionz( t̃ , t̃ 8)[z(t/ l ,t8/ l z) is invari-
ant under rescaling Eq.~17!, we can write thatz(t/ l ,t8/ l z)
5z(t,t8). By fixing l 5t, we obtain z(t,t8)5z(1,t8/tz).
Thusz is a function of the single variablet8/tz, and we can
write z(t,t8)5g(t8/tz). Here we have defined

g~ t8/tz![z~1,t8/tz!. ~19!

By inverting the above relation, we havet8/tz5g21(z),
and passing to the logarithms we recoverz5 ln(t8)/ln(t)
1H(z)/ln(t), where we have introduced the unknown gene
function H(z)52 ln@g21(z)#. Thus we have found the solu
tion given in Eq.~18!. This result states that, for fixedz,
whenever ln(t8) and ln(t) are large enough, we havez
5 ln(t8)/ln(t)1O@1/ln(t)#.

By then imposing group properties on the functio
C(t,t8) itself @see Eq.~7!#, we obtain Eq.~8!, which, after
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insertion of Eq.~12!, implies thatf (t/ l ,t8/ l z)5 f (t,t8), and
by taking l 5t, as above, we have thatf (t,t8)
5 f (1,t8/tz(t,t8)).

Wheneverz is a constant we recover a nonmixing ca
described in the preceding section. Let us now suppose tz
is not a constant and is given by Eq.~18!. In this case, we
can prove that the exponentf (t,t8) is a function of the single
variable z: f (t,t8)5 f (z). In fact, as before we have tha
f (t,t8)5 f (1,t8/tz)5 f „1,g21(z)…, i.e., f is a function of the
variablez. Analogously one proves thatC(t,t8)5t f (z)S(z),
where the scaling functionS is now S(x)5C„1,g21(x)….
From this result, in the asymptotic limit of larget8 andt, we
recover the scaling form forC(t,t8), given in Eqs.~13! and
~15!.

IV. CONCLUSIONS

We expect that the present approach may be usefu
describe general properties of dynamical functions in ph
cal systems when their characteristic times diverge, since
such a situation, such as close to usual critical points, s
invariance should be reasonably present. Actually, one
serves diverging characteristic times typically when out-
equilibrium-dynamics phenomena become important,
when an explicit dependence of functions such asC(t,t8) on
both times~and not on their difference! is observed, a state
which is sometimes generically called ‘‘aging.’’ In this pe
spective the structural properties of scaling described h
should be naturally associated with out-of-equilibrium d
rd
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namics ~i.e., with aging! effects. Interestingly, we have
pointed out that in a broad variety of physical systems, ra
ing from magnets to polymers, glasses, or spin glasses,
dom fields, random ferromagnets, granular materials, di
sive systems, etc., one observes scaling properties
dynamical functions that may well be inserted in the fram
work reported above.

We have shown in full generality that a generalized h
mogeneous function,C(t,t8), which acts as in Eq.~1! under
the scale transformation of its variables given in Eq.~2!,
must obey the scaling behavior of Eq.~3!. In this theoretical
framework, a multiscaling or multifractal behavior is als
admissible in the dynamics. It would be interesting to det
mine if it exists in real dynamical systems.

The present approach is not restricted to scaling of
namical functions. We have seen that it describes, as is
known, the usual scaling in standard critical phenomena,
it also describes multiscaling and multifractal properties
troduced in apparently completely different systems such
models of self-organized-criticality, DLA, random resist
networks. In this sense this approach may help to rationa
the existence of very few broad ‘‘universality classes’’ fou
in the scaling behaviors in very different contexts.
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